
Assignment 2 
A) 

a) Response time for circuit with simple regulation is 0.693147 s. 

Response time for circuit with negative autoregulation is 0.248914 s. 

 

Note: Our goal is to have same steady state concentration for both NAR and simple regulatory 

circuit. 

 

Code: 

params = {β → 1, k → 0.3, α → 1, n → 2} 

solNAR = NDSolve [{y '[t] ⩵ β / (1 + (y[t] / k)^ n) - α y[t], y[0] ⩵ 0.00} /. params , y, {t, 0, 5}] 

ystNAR = y[t] /. NSolve[{0 ⩵ β / (1 + (y[t] / k)^ n) - α y[t] && y[t] > 0} /. params , y[t]] 

params = Insert[params , βsimple → ystNAR〚1〛 , - 1] 

solS = DSolve[{y '[t] ⩵ βsimple - α y[t], y[0] ⩵ 0} /. params , y, {t, 0, 5}] ystSimple = y[t] /. 

NSolve[{0 ⩵ βsimple - α y[t] && y[t] > 0} /. params , y[t]] 

p1 = Plot[{(y[t] /. solNAR) / ystNAR , (y[t] /. solS) / ystSimple }, {t, 0, 5}, PlotRange → All, 

PlotLegends → {"NAR", "Simple "}, AxesLabel → {"time", "y/yst"}] 

tSimp = t /. NSolve[{y[t] ⩵ ystSimple / 2 } /. solS , t] tNAR = t /. NSolve[{y[t] ⩵ ystNAR / 2} /. 

solNAR , t] 

 

 
 

b) We will have to increase n (cooperativity) in hill function to reach the limit of step function of 

inhibition. 

 
With the increase in n, we observe even faster initial growth and lower delay in auto 

repression to stop production at the desired steady-state. 

 

 



 

c) Given, 𝛽𝑁𝐴𝑅 =  2,20,200 µM/h and 𝑛 →  ∞. Now since 𝑦[𝑡] ≪  𝛽𝑁𝐴𝑅/𝛼, we can approximate 

𝑇1/2
𝑁𝐴𝑅 = 𝐾/2𝛽𝑁𝐴𝑅. Response time of simple regulatory circuit is 𝑇1/2

𝑠𝑖𝑚𝑝𝑙𝑒
= 𝑙𝑛2/𝛼 

⟹ 𝑇1
2

𝑁𝐴𝑅 =  0.3
𝜇𝑀

2 ∗ 2,20,200 𝜇𝑀 ℎ−1
=   6.81 ∗ 10−7 ℎ 

And, 

𝑇1/2
𝑠𝑖𝑚𝑝𝑙𝑒

=
𝑙𝑛2

1 ℎ−1
= 0.693 ℎ  

 

d) At the step function limit i.e. 𝑛 → ∞ and 𝑦[𝑡] ≪  𝛽𝑁𝐴𝑅/𝛼 , we know 𝑇1/2
𝑁𝐴𝑅 = 𝐾/2𝛽𝑁𝐴𝑅 and 

𝑇1/2
𝑠𝑖𝑚𝑝𝑙𝑒

= 𝑙𝑛2/𝛼. This means 𝑇1/2
𝑁𝐴𝑅 is does no depends on α, while 𝑇1/2

𝑠𝑖𝑚𝑝𝑙𝑒
 is inversely 

proportional to α. 

 

e) Using the above mentioned formulas, we calculate 𝑇1/2
𝑁𝐴𝑅 and 𝑇1/2

𝑠𝑖𝑚𝑝𝑙𝑒
. 

 

α 𝑇1/2
𝑁𝐴𝑅 (hr) 𝑇1/2

𝑠𝑖𝑚𝑝𝑙𝑒
 (hr) 

1 0.005 0.693 

2 0.005 0.346 

10 0.005 0.069 

20 0.005 0.034 

 

f) Summary statement: 

 Response time of NAR circuit depends on half − saturation constant 𝑘 and maximal 

production rate β. 

 Response time of simple regulatory circuit depends on removal rate α. 

 Steady state concentration of NAR circuit depends on half − saturation constant 𝑘. 

 Steady state concentration of simple regulatory circuit depends on maximal 

production rate βsimple and removal rate α. 

 

 

 

 

 

 

 

 

 

 

 



B) 
a) Steady state concentration of 𝑦 given 𝑦[0] = 0 𝜇𝑀 is 0 𝜇𝑀. 

Steady state concentration of 𝑦 given 𝑦[0] = 30 𝜇𝑀 is 18.6332 𝜇𝑀. 

 

The given PAR circuit has three fixed points (𝑦 = 0 𝜇𝑀 , 𝑦 = 5.36675 𝜇𝑀 𝑎𝑛𝑑 𝑦 =

18.6332 𝜇𝑀). The fixed point 𝑦 = 5.36675 𝜇𝑀 is unstable, thus steady state concentration 

of 𝑦 is either 0 𝜇𝑀 or 18.6332 𝜇𝑀 which depends on initial conditions. 

 

 

 
 

b) Critical concentration at which the systems switches from the OFF state to the ON state is 

𝑦 = 5.37775 𝜇𝑀.  

 

 

 

Code: 

params = { β → 24, k → 10, α → 1, n → 2}  

solPAR1 = NDSolve [{y '[t] ⩵ β ((y[t] / k)^ n) / (1 + (y[t] / k)^ n) - α y[t], y[0] ⩵ 3} /. params , 

y, {t, 0, 20}]  

solPAR2 = NDSolve [{y '[t] ⩵ β ((y[t] / k)^ n) / (1 + (y[t] / k)^ n) - α y[t], y[0] ⩵ 5} /. params , 

y, {t, 0, 20}]  

solPAR3 = NDSolve [{y '[t] ⩵ β ((y[t] / k)^ n) / (1 + (y[t] / k)^ n) - α y[t], y[0] ⩵ 10} /. params 

, y, {t, 0, 20}]  

solPAR4 = NDSolve [{y '[t] ⩵ β ((y[t] / k)^ n) / (1 + (y[t] / k)^ n) - α y[t], y[0] ⩵ 30} /. params 

, y, {t, 0, 20}] 

solPAR5 = NDSolve [ {y '[t] ⩵ β ((y[t] / k)^ n) / (1 + (y[t] / k)^ n) - α y[t], y[0] ⩵ 5.36675 } /. 

params , y, {t, 0, 20}] 



Plot[{y[t] /. solPAR1 , y[t] /. solPAR2 , y[t] /. solPAR5 , y[t] /. solPAR3 , y[t] /. solPAR4 }, {t, 0, 

20}, PlotRange → {All, {0, 35}}, AxesLabel → {"time", "y[t]"} , PlotLegends → {"y[0] = 3" , "y[0] 

= 5" , "y[0] = 5.36675 " , "y[0] = 10" , "y[0] = 30"}] 

c) System has three steady-states and only two of them are stable. 

 𝑦 = 0 𝜇𝑀, 𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒. 

 𝑦 = 5.36675 𝜇𝑀, 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒. 

 𝑦 = 18.6332 𝜇𝑀, 𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒.  
d) The steady-state concentration of Y after the pulse of production is gone depends on the 

duration of the pulse. If the pulse duration ≤ 0.10 hr then the steady state concentration is 0 

and if pulse duration ≥ 0.20 hr then steady state concentration of Y is 18.6332 𝜇𝑀. 

 

 

 Note: a is the duration of the pulse in hr. 

 Pulse duration to switch the steady state from 0 𝜇𝑀 to 18.6332 𝜇𝑀 has to be approximately 

 greater than or equal to 0.2 hrs, which is evident from the above graph. 

 Code: 

 params = { β → 24, k → 10, α → 1, n → 2 } 

 p[t] = UnitStep [t] - UnitStep [t - r] 

sol = solPAR = ParametricNDSolve [ {y '[t] ⩵ 50 * p[t] + β ((y[t] / k)^ n) / (1 + (y[t] / k)^ n) - α 

y[t], y[0] ⩵ 0} /. params , y, {t, 0, 200} , {r}] 

Plot[Evaluate [Table[y[a][t] /. sol, {a, 0.1, 0.3, .1}]], {t, 0, 100}, PlotRange → All , PlotRange → 

{All, {0, 50}} , AxesLabel → {"time (hr)" , "Y (uM)"} , PlotLegends → {"a = 0.1" , "a = 0.2" , "a = 

0.3"} ] 

 

 

 

 

 

 

 

 



C) 
𝑑𝑦

𝑑𝑡
=  𝛽

𝑦

𝑘 +  𝑦
−  𝛼 ∗ 𝑦 

a) On fixed points 
𝑑𝑦

𝑑𝑡
= 0. 

𝑑𝑦

𝑑𝑡
=  𝛽

𝑦

𝑘 +  𝑦
−  𝛼 ∗ 𝑦 = 0 

⇒ 𝑦 = 0 , 𝑦 =
𝛽

𝛼
− 𝑘 

Systems has two fixed points 𝑦 = 0 𝑎𝑛𝑑 𝑦 =  
𝛽

𝛼
− 𝑘. 

 

b) System is monostable as fixed point 𝑦 =  
𝛽

𝛼
− 𝑘 is stable while fixed point 𝑦 = 0 is unstable. 

Fixed point 𝑦 =  
𝛽

𝛼
− 𝑘 is stable, because shifting 𝑦 to either side (𝑜𝑓 

𝛽

𝛼
− 𝑘) causes a return 

to the fixed point. 

 

 

 

Code: 

Plot[{24*y/(y+10) , y} , {y, 0 , 20} , PlotLegends->{"Production rate" , "Removal Rate"} , 

AxesLabel -> {"Y" , "Rates"}] 


