A)

a)

b)

Assignment 2

Response time for circuit with simple regulation is 0.693147 s.
Response time for circuit with negative autoregulation is 0.248914 s.

Note: Our goal is to have same steady state concentration for both NAR and simple regulatory
circuit.

Code:

params={—>1,k->03,a>1,n->2}

solNAR = NDSolve [{y '[t] == B/ (1 + (y[t] / k)* n) - a y[t], y[0] == 0.00} /. params, y, {t, O, 5}]
ystNAR = y[t] /. NSolve[{0 == B / (1 + (y[t] / k) n) - a y[t] && y[t] > 0} /. params, y[t]]
params = Insert[params , Bsimple = ystNAR [1] ,-1]

solS = DSolve[{y '[t] == Bsimple - a y[t], y[0] == 0} /. params, v, {t, O, 5}] ystSimple = y[t] /.
NSolve[{0 == Bsimple - a y[t] && y[t] > 0} /. params, y[t]]

pl = Plot[{(y[t] /. soINAR) / ystNAR , (y[t] /. solS) / ystSimple }, {t, 0, 5}, PlotRange = All,
PlotLegends - {"NAR", "Simple "}, AxesLabel = {"time", "y/yst"}]

tSimp =t /. NSolve[{y[t] == ystSimple /2 }/. solS, t] tNAR =t /. NSolve[{y[t] == ystNAR / 2} /.
soINAR, t]
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We will have to increase n (cooperativity) in hill function to reach the limit of step function of
inhibition.
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With the increase in n, we observe even faster initial growth and lower delay in auto
repression to stop production at the desired steady-state.
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d)

f)

Given, Byar = 2,20,200 uM/handn — oo. Now since y[t] < Byar/®, we can approximate

T{%‘R = K /2 4r- Response time of simple regulatory circuit is Tls/i;nple =In2/a
uM
=T =03 = 681x1077h
1 2+2,20,200 uM b1 i
And,

; In2
simple __ _
Ty === 0-693h

At the step function limit i.e. n — o0 and y[t] < Byar/a , we know T{%R = K/2Byagr and

Tls/i;”ple = [n2/a. This means Tl%m is does no depends on a, while Tls/i;nple is inversely
proportional to a.
Using the above mentioned formulas, we calculate Tll\}‘gR and Tls/i;nple.

a TY4F (hr) T,5 P (hr)

0.005 0.693

2 0.005 0.346

10 0.005 0.069

20 0.005 0.034

Summary statement:
e Response time of NAR circuit depends on half — saturation constant k and maximal
production rate f.
e Response time of simple regulatory circuit depends on removal rate a.
e Steady state concentration of NAR circuit depends on half — saturation constant k.
e Steady state concentration of simple regulatory circuit depends on maximal
production rate Bsimple and removal rate a.



B)

a) Steady state concentration of y given y[0] = 0 uM is 0 uM.

Steady state concentration of y given y[0] = 30 uM is 18.6332 uM.

The given PAR circuit has three fixed points (y =0uM,y =5.36675uM and y =
18.6332 uM). The fixed point y = 5.36675 uM is unstable, thus steady state concentration
of y is either OuM or 18.6332uM which depends on initial conditions.
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b) Critical concentration at which the systems switches from the OFF state to the ON state is

y = 5.37775 uM.
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Code:

params={f > 24,k->10,a > 1,n > 2}

solPAR1 = NDSolve [{y '[t] == B ((y[t] / k)* n) / (1 + (y[t] / k)" n) - ay[t], y[0] == 3} /. params,
y, {t, 0, 20}]

solPAR2 = NDSolve [{y '[t] == B ((y[t] / k)" n) / (1 + (y[t] / k)* n) - ay[t], y[0] == 5} /. params,,
y, {t, 0, 20}]

solPAR3 = NDSolve [{y '[t] == B ((y[t] / k)* n) / (1 + (y[t] / k) n) - a y[t], y[0] == 10} /. params
.Y, {t,0,20}]

solPAR4 = NDSolve [{y '[t] == B ((y[t] / k)* n) / (1 + (y[t] / k)* n) - a y[t], y[0] == 30} /. params
.Y, {t,0,20}]

solPARS5 = NDSolve [ {y '[t] == B ((y[t] / k)* n) / (1 + (y[t] / k)” n) - a y[t], y[0] == 5.36675 }/.
params, vy, {t, 0, 20}]



d)

Plot[{y[t] /. solPAR1 , y[t] /. soIPAR2, y[t] /. solPAR5, y[t] /. solPAR3, y[t] /. solPAR4 }, {t, O,
20}, PlotRange - {All, {0, 35}}, AxesLabel = {"time", "y[t]"}, PlotLegends = {"y[0] = 3", "y[O]
=5","y[0] =5.36675 ", "y[0] = 10", "y[0] = 30"}]

System has three steady-states and only two of them are stable.

e vy =0uM,stable steady state.

e y=>5.36675uM,unstable steady state.

e vy =18.6332 uM, stable steady state.
The steady-state concentration of Y after the pulse of production is gone depends on the
duration of the pulse. If the pulse duration £ 0.10 hr then the steady state concentration is 0
and if pulse duration 2 0.20 hr then steady state concentration of Y is 18.6332 uM.
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Note: a is the duration of the pulse in hr.
Pulse duration to switch the steady state from 0 uM to 18.6332 uM has to be approximately
greater than or equal to 0.2 hrs, which is evident from the above graph.

Code:

params={f > 24,k->10,a>1,n—>2}
p[t] = UnitStep [t] - UnitStep [t - r]

sol = solPAR = ParametricNDSolve [ {y '[t] == 50 * p[t] + B ((y[t] / k)* n) / (1 + (y[t] / k)* n) - a
y[t], y[0] == 0} /. params,, y, {t, 0, 200}, {r}]

Plot[Evaluate [Table[y[a][t] /. sol, {a, 0.1, 0.3, .1}]], {t, O, 100}, PlotRange > All, PlotRange >
{All, {0, 50}}, AxesLabel = {"time (hr)", "Y (uM)"}, PlotLegends = {"a=0.1","a=0.2","a=
0.3"}]
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a) On fixed points%z 0.
dy y
g2 _ =0
i Py oY

:>y=0,y=§—k

Systems has two fixed pointsy = 0 and y = E_ k.

a

b) System is monostable as fixed point y = g— k is stable while fixed point y = 0 is unstable.

Fixed pointy = g— k is stable, because shifting y to either side (of g— k) causes a return

to the fixed point.
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Code:

Plot[{24*y/(y+10), v}, {y, 0, 20}, PlotLegends->{"Production rate" , "Removal Rate"},
AxesLabel -> {"Y", "Rates"}]



